Appendix 1. Formula Reference {-}

Exponents and Logarithms  
Rules of Exponents $a^m \cdot a^n = a^{m+n}$
  $a^m \div a^n = a^{m-n}$
  $(a^m)^n = a^{mn}$
  $a^0 = 1$
  $a^1 = a$
  $a^{-m} = \frac{1}{a^m}$
  $a^{\frac{1}{m}} = \sqrt[m]{a}$
  $a^{\frac{n}{m}} = (\sqrt[m]{a})^n$
  $(ab)^n = a^n \cdot b^n$
  $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$
Laws of Logarithms (real case: $a, x, y > 0$, and $a \neq 1$) $a^x = b \Longleftrightarrow \log_a{b}=x$
  $\log_a{x} + \log_a{y} = \log_a{(xy)}$
  $\log_a{x} - \log_a{y} = \log_a{(\frac{x}{y})}$
  $n \log_a{x} = \log_a{(x^n)}$
Sequences and Series  
Sigma notation properties  
Addition property $\sum_{n=1}^k{(a_n+b_n)}=\sum_{n=1}^k{a_n}+\sum_{n=1}^k{b_n}$
Constant Multiplication Property $\sum_{n=1}^k{c \cdot u_n} = c \cdot \sum_{n=1}^k{u_n}$
Arithmetic Sequences and Series  
The $n^{\text{th}}$ term of an arithmetic sequence $u_n=u_1+(n-1)d$
The sum of a finite arithmetic series $S_n = \frac{n}{2}(u_1 + u_n) \quad \text{OR} \quad S_n = \frac{n}{2}\left(2u_1 + (n - 1)d\right)$
Geometric Sequences and Series  
The $n^{\text{th}}$ term of a geometric sequence $u_n = u_1 r^{n-1}$
The sum of a finite arithmetic series $S_n = \frac{u_1(r^n-1)}{r-1} \quad \text{OR} \quad S_n = \frac{u_1(1-r^n)}{1-r}, \quad \text{where} \quad r \neq 1$
The sum of an infinite geometric series $S_{\infty}=\frac{u_1}{1-r}, \quad \text{where} \quad \lvert r \rvert < 1$
Finance  
Interest paid $\text{Interest Paid} = \text{Total Repayments} - \text{Amount Borrowed}$
Effective annual interest rate $r_{\text{eff}} = \left(1 + \frac{r}{n_c}\right)^{n_c} - 1$
Compound interest (discrete) $V_f=V_0 \left(1 + \frac{r}{n_c}\right)^{n_{c}t}$
Compound interest (continuous) $V_f = V_0 e^{rt}$
Sets  
   
Sectors and Radians  
Radians and degrees equivalence $\pi \text{ radians} = 180^\circ$
Arc length $l=r \theta$
Sector area $A=\frac{1}{2}r^2\theta$
Geometry  
Distance between two points $a$ and $b$ in $n$-dimensional space $\sqrt{\sum_{i=1}^{n} \left( b_i - a_i \right)^2}$
Midpoint of a line segment with endpoints $a$ and $b$ in $n$-dimensional space $\left(\frac{1}{2}\left(a_i + b_i \right) \right)_{1 \leq i \leq n}$
Spheres of radius $r$  
Surface area $A=4 \pi r^2$
Volume $V=\frac{4}{3} \pi r^3$
Pyramids of height $h$  
Volume $V=\frac{1}{3}Ah$, where $A$ is the area of the base, and $h$ is perpendicular to the base plane
Parallelogram  
Area $A=\lvert\mathbf{v}\times\mathbf{w}\rvert$, where $\mathbf{v}$ and $\mathbf{w}$ are two adjacent sides of a parallelogram
Trigonometry  
Trigonometric Identities  
  $\cos^2\theta + \sin^2\theta = 1$
  $\tan\theta = \frac{\sin\theta}{\cos\theta}$
Statistics  
Percentage error $\varepsilon = \lvert \frac{v_a - v_e}{v_e} \rvert \cdot 100$
Descriptive statistics  
Probability  
   
Random Variables and Probability Distributions  
   
Hypothesis Testing  
   
Functions  
Equation of a straight line $y=mx+c \quad \text{OR} \quad y=m(x-x_1)+y_1$
Line of symmetry If $f(x)=ax^2+bx+c$, the axis of symmetry of is $x=-\frac{b}{2a}$
Discriminant $\Delta = b^2 -4ac$
Differentiation  
   
Integration  
   
Differential Equations  
   
Complex Numbers  
Rectangular form $z = a + bi$
Polar form $z = r(\cos \theta + i\sin(\theta))$
Exponential form $z = re^{i \theta}$
Vectors  
Magnitude $\lvert \mathbf{v} \rvert = \sqrt{v_1^2 + v_2^2 + v_3^2}$
  $\text{OR} \quad \lvert \mathbf{v} \rvert = \sqrt{\sum_{i=1}^{n} v_i^2}$, where $v_i$ is the $i^\text{th}$ component of $\mathbf{v}$
Scalar product $\mathbf{v} \cdot \mathbf{w} = \sum_{i=1}^n v_i w_i$
  $= \lvert\mathbf{v}\rvert\lvert\mathbf{w}\rvert\cos\theta$, where $\theta$ is the angle between $\mathbf{v}$ and $\mathbf{w}$
Vector product given $\mathbf{v}=\begin{pmatrix}v_1\v_2\v_3\end{pmatrix},$ and $\mathbf{w}=\begin{pmatrix}w_1\w_2\w_3\end{pmatrix}, \mathbf{v}\times \mathbf{w}=\begin{pmatrix}v_2w_3-v_3w_2\v_3w_1-v_1w_3\v_1w_2-v_2w_1\end{pmatrix}$
  $\lvert\mathbf{v}\times\mathbf{w}\rvert=\lvert\mathbf{v}\rvert\lvert\mathbf{w}\rvert\sin\theta$
Matrices  
Matrix addition $(A + B){ij} = a{ij} + b_{ij}$
Matrix multiplication $(AB){ij} = \sum{k=1}^n a_{ik} b_{kj}$
  $\text{OR} \quad AB = \left[ \sum_{k=1}^n a_{ik} b_{kj} \right]_{1 \le i \le m,\ 1 \le j \le p}$
Determinant of a 2×2 matrix $\det \begin{pmatrix} a & b \ c & d \end{pmatrix} = ad - bc$
Determinant of a 3×3 matrix $\det \begin{pmatrix} a & b & c \ d & e & f \ g & h & i \end{pmatrix} = a(ei-fh)-b(di-fg)+c(dh-eg)$
Invertibility condition $A$ is invertible if $\det A \neq 0$
Power formula $A^n = PD^nP^{-1}$, where $A$ is a diagonalisible square matrix, $n \in \mathbb{N}$, $P$ is the matrix of eigenvectors of $A$, and $D$ is the diagonal matrix of the corresponding eigenvalues
Transformation Matrices  
Graph Theory  
Adjacency matrices $a_{ij}=1$ if there exists an edge from vertex $i$ to vertex $j$, otherwise $a_{ij}=0$, for an unweighted graph.
  If the graph is weighted, $a_{ij}=w_{ij}$, where $w_{ij}$ represents the weight of the edge from $i$ to $j$, or $0$ if there exists no edge.
Transition matrices $a_{ij}$ is the probability of moving from vertex $i$ to vertex $j$ in a given step. (Note: Some curricula define $a_{ij}$ as the probability of moving from $j$ to $i$)
Modelling  
Logistic function $\frac{L}{1+Ce^{-kx}}$, where $L, C, k \in \mathbb{R}^+$